Spectral Compressive Sensing
نویسنده
چکیده
Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals. A great many applications feature smooth or modulated signals that can be modeled as a linear combination of a small number of sinusoids; such signals are sparse in the frequency domain. In practical applications, the standard frequency domain signal representation is the discrete Fourier transform (DFT). Unfortunately, the DFT coefficients of a frequency-sparse signal are themselves sparse only in the contrived case where the sinusoid frequencies are integer multiples of the DFT’s fundamental frequency. As a result, practical DFT-based CS acquisition and recovery of smooth signals does not perform nearly as well as one might expect. In this paper, we develop a new spectral compressive sensing (SCS) theory for general frequency-sparse signals. The key ingredients are an over-sampled DFT frame, a signal model that inhibits closely spaced sinusoids, and classical sinusoid parameter estimation algorithms from the field of spectrum estimation. Using peridogram and eigen-analysis based spectrum estimates (e.g., MUSIC), our new SCS algorithms significantly outperform the current state-of-the-art CS algorithms while providing provable bounds on the number of measurements required for stable recovery.
منابع مشابه
Spectral analysis based on compressive sensing in nanophotonic structures.
A method of spectral sensing based on compressive sensing is shown to have the potential to achieve high resolution in a compact device size. The random bases used in compressive sensing are created by the optical response of a set of different nanophotonic structures, such as photonic crystal slabs. The complex interferences in these nanostructures offer diverse spectral features suitable for ...
متن کاملSpatial versus spectral compression ratio in compressive sensing of hyperspectral imaging
Compressive hyperspectral imaging is based on the fact that hyperspectral data is highly redundant. However, there is no symmetry between the compressibility of the spatial and spectral domains, and that should be taken into account for optimal compressive hyperspectral imaging system design. Here we present a study of the influence of the ratio between the compression in the spatial and spectr...
متن کاملCompressive Sensing and Hyperspectral Imaging
Compressive sensing (sampling) is a novel technology and science domain that exploits the option to sample radiometric and spectroscopic signals at a lower sampling rate than the one dictated by the traditional theory of ideal sampling. In the paper some general concepts and characteristics regarding the use of compressive sampling in instruments devoted to Earth observation is discussed. The r...
متن کاملCompressive hyperspectral imaging by random separable projections in both spatial and spectral domains
An efficient method and system for compressive sensing of hyperspectral data is presented. Compression efficiency is achieved by randomly encoding both the spatial and spectral domains of the hyperspectral datacube. Separable sensing architecture is used to reduce the computational complexity associated with compressive sensing of large data, which is typical to hyperspectral imaging. The syste...
متن کاملCompressive Sampling with Known Spectral Energy Density
A method to improve l1 performance of the CS (Compressive Sampling) for signals with known spectral energy density is proposed. Instead of random sampling, the proposed method selects the location of samples to follow the distribution of the spectral energy. Samples collected from three different measurement methods; the uniform sampling, random sampling, and energy equipartition sampling, are ...
متن کاملCompressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains.
An efficient method and system for compressive sensing of hyperspectral data is presented. Compression efficiency is achieved by randomly encoding both the spatial and the spectral domains of the hyperspectral datacube. Separable sensing architecture is used to reduce the computational complexity associated with the compressive sensing of a large volume of data, which is typical of hyperspectra...
متن کامل